Category Archives: Under the Radar

7 Things To Know About Mitochondria: 2016 edition

Mitochondria: To most people, they’re little more than a ghostly memory fragment from middle school biology. However, these tiny “powerhouse(s) of the cell” are much more than they seem.

They’re actually the shape-shifting descendants of ancient bacteria that were eaten by a larger archaebacterium billions of years ago. . (If you want to know more about that theory, check out my recent Lateral magazine piece on the scientist who developed that theory.)  Mitochondria have complex relationships with other organelles, swim around in our neurons, and make up 1/3rd of the mass of heart cells.  In the past year, scientists have learned how to add and remove them with cellular surgeries and how to manipulate them directly.

Mitochondria live in every cell in your body and are essential for human life. As University of California post doc Samantha Lewis pointed out to me: “There’s mitochondrial involvement in almost every disease.” 

Yet, we rarely hear of or think about our cells’ powerhouses.

Here are seven facts you probably haven’t heard about mitochondria:

1:  Mitochondria are interconnected shape-shifters.

18962944788_bb79ca413b_k

[A bone cancer cell with stringy mitochondria highlighted in yellow. Photo by NICHD via Flickr & CC 2.0 License.] 

We say “Mitochondria is the powerhouse of the cell” as if mitochondria is a singular word, but actually it’s plural. (The singular of mitochondria is mitochondrion.)  However, in most cells mitochondria act as a collective, passing electrons and genetic information from mitochondrion to mitochondrion.

“They’re [descended from] bacteria that divide in a binary fashion,” explained UC Davis cell biologist and mitochondria specialist Jodi Nunnari. “During the course of evolution [the mitochondrial] genome has been greatly reduced. As a consequence of that and the fact that they were reproducing in a new environment, a few of those do mitochondrial fusion.” Mitochondria’s habit of merging sets them apart from all known bacteria. “Bacteria divide, but they don’t fuse,” Nunnari added.

In fact, mitochondria are so tightly connected that many scientists think of them as a membrane network rather than a series of jelly-bean shaped organelles.

Continue reading “7 Things To Know About Mitochondria: 2016 edition” »

5 Amazing Feats Performed by “Meta-Genes”

[Image via the NIH Image Gallery. Photo by Alex Ritter, Jennifer Lippincott Schwartz, and Gillian Griffiths. Full video, complete with narration here.] 

Under the Radar: A series of listicles about biology concepts you definitely won’t find in newspaper headlines.

#1: Be a Navigation App for Immune Cells

Natural killer cells, or “NK cells” are the human body’s best defense against cancer.  While other types of immune cells often ignore tumor cells, natural killer cells specialize in finding and destroying human cells that look either infected or like cancer mutants. In leukemia patients,  a higher number of active natural killer cells ups the patient’s chances for survival, so much so that  researchers are experimenting with transfusing NK cells into patients.

Just one problem there: Active natural killer cells die without a strong support network.

Dormant NK cells can survive in the bloodstream for a long time, but once activated, natural killers have to make a b-line for cells carrying a marker called IL-15 or die,  but until a study in Monday’s edtion of PNAS , no one knew how natural killers knew to look for IL-15. The study, led by Vanderbilt immunologist Eric Sebzda and grad student Whitney Rabacal, traced NK cells’ IL-15 homing ability back to a biochemical with the horrendous name “Kruppel-like Factor 2” (KLF2).

KLF2, oddly enough, also exerts a strong navigational influence on the immune system’s T-cells and B-cells.  Even though all three types of cells fall under the “white blood cell” umbrella, the notion that one protein could control navigation in all three is pretty weird.  Crawling and navigating are complex tasks, requiring coordination between dozens of genes. “[NK cell migration] is totally different from how t-cells and b-cells circulate,” Sebzda said.

Additionally, taking away KLF2 has distinctive effects on each type of cell: KLF2-less t-cells vacate the central body and crawl out to lab mice’s fingers and toes, KLF2-less b-cells all congregate at the spleen (which creates some serious problems for those lab mice), and KLF2-less natural killers end up dying alone.

So KLF2 could be super-useful for improving cancer immunotherapy. But why is KLF2 so versatile in the first place?

The answer lies in KLF2’s ability to bind to a certain recurring DNA base pair sequence, one that presumably earmarks the genes needed in each immune system navigation system, and it’s far from the only protein with such abilities…

Continue reading “5 Amazing Feats Performed by “Meta-Genes”” »

Splice of Life: 3 Examples of How Nature Edits Its Own Genes

About the “Under the Radar” series: Some scientific concepts come up again and again in interviews with scientists but never find their way into newspaper headlines. Each post in this series follows one of those biology “bogeys” that fly under journalism’s radar through 3 different mini-stories.

Story #1: Scientists splice up a CRISPR chicken…and find an evolutionary shortcut

2429580081_ef425395df_o

Birds’ brains have all of the tools to make mammal-like neurons, according to a study in Science from August And, incredibly, the researchers behind the study only had to tinker with one gene  that changes how chicken cells edit their RNA to unlock several seemingly unrelated mammal neuron traits in chicken neural precursor cells.

It was as if the chicken cells instantly acquired a whole bunch of mutations at once, instead of just one. 

Researchers think that this gene editing process– aka “alternative splicing”–may explain why some traits seem to have evolved at such high speeds.

“This is a process that has diverged very rapidly during evolution to produce different versions of proteins,” University of Toronto geneticist Ben Blencowe explained in a phone interview.

500 million years is a long time to evolve, but it’s still hard to account for all of the diversity in vertebrates based on variation in DNA base pairs alone.

The key to animal diversity lies in an aspect of biology that your high school biology class kinda sorta covered, but lots of people forget all the steps after they’re done cramming for the test.

Continue reading “Splice of Life: 3 Examples of How Nature Edits Its Own Genes” »